Skip to main content
Welcome to Memvid, the portable AI memory system that puts you in control. This guide covers everything you need to start building intelligent applications.

What Makes Memvid Different

Single-File Architecture

Every .mv2 file is completely self-contained:
  • Your data: Documents, text, images, audio, videos
  • Embeddings: Vector representations for semantic search
  • Indices: BM25 lexical index and vector index
  • Time index: Temporal ordering for timeline queries
  • Write-ahead log: Crash-safe transaction logging
Share a memory by sharing a file. It works anywhere: local disk, USB drive, cloud storage, or Git repository.

Hybrid Search Engine

Memvid combines the best of two search paradigms:
# Hybrid search (recommended)
memvid find knowledge.mv2 --query "user authentication" --mode auto

# Lexical search - exact keyword matching
memvid find knowledge.mv2 --query "authentication" --mode lex

# Semantic search - conceptual understanding
memvid find knowledge.mv2 --query "how do users log in" --mode sem

Lightning Performance

Built in Rust from the ground up for maximum performance:
OperationTime
Search (50K docs)< 20ms
Bulk ingestion150+ docs/sec
Frame append< 0.1ms

Quick Start

1. Install the CLI

npm install -g memvid-cli

2. Create Your First Memory

# Create a new memory file (1 GB capacity by default)
memvid create my-knowledge.mv2

# Ingest documents with vector compression
memvid put my-knowledge.mv2 --input ./documents/ --vector-compression

# Search your knowledge
memvid find my-knowledge.mv2 --query "your search query"

3. Build Your Application

    import { use } from '@memvid/sdk';

    // Open your memory
    const mem = await use('basic', 'my-knowledge.mv2', { readOnly: true });

    // Search
    const results = await mem.find('machine learning', { k: 10 });
    results.hits.forEach(hit => {
      console.log(`${hit.score.toFixed(2)}: ${hit.title}`);
    });

    // Ask questions
    const answer = await mem.ask('What are the key concepts?');
    console.log(answer.answer);

Key Features in v2

  • Frame Architecture: Video-inspired append-only storage for crash safety and time-travel queries
  • Time Index Track: Query documents by temporal order
  • Embedded WAL: Crash-safe transactions with automatic recovery
  • Parallel Ingestion: Multi-threaded document processing
  • Framework Adapters: Native integrations for LangChain, LlamaIndex, AutoGen, and more

Next Steps


Getting Help

We’re excited to see what you build with Memvid!