Skip to main content
Memvid uses local models for semantic search (embeddings), reranking, visual search (CLIP), Logic‑Mesh entity extraction (NER), and local enrichment workflows. Models are cached under MEMVID_MODELS_DIR (default ~/.memvid/models). Some models are installed explicitly via memvid models install, while embedding/reranker models are auto-downloaded on first use (unless offline).

Quick Start

# See what's available / installed (no downloads)
memvid models list

# Install optional CLIP + NER models
memvid models install --clip mobileclip-s2
memvid models install --ner distilbert-ner

# Install optional local LLM for enrichment (GGUF)
memvid models install phi-3.5-mini

Model Types

TypeHow it’s fetchedUsed by
EmbeddingAuto-download on first useput --embedding, find --mode sem/auto, ask --mode sem/hybrid
RerankerAuto-download on first useHybrid ask/find (disable with --no-rerank)
CLIPmemvid models install --clip …put --clip, find --mode clip
NERmemvid models install --ner …put --logic-mesh, follow …
LLM (Enrich)memvid models install …enrich, put --contextual --contextual-model local
WhisperAuto-download on first useput --transcribe

Embedding Models (Text Vectors)

Select the default embedding model with the global -m/--embedding-model flag. It can appear before or after the subcommand:
memvid put knowledge.mv2 --input docs/ --embedding -m bge-small
memvid -m openai-small put knowledge.mv2 --input docs/ --embedding

Common choices

ModelDimensionsNotes
bge-small384Default local model (fastembed)
bge-base768Higher quality local model
nomic768High accuracy local model
gte-large1024Best local semantic depth
openai-small1536OPENAI_API_KEY required
openai-large3072OPENAI_API_KEY required
openai3072Alias for openai-large
openai-ada1536Legacy OpenAI model

External embedding APIs

export OPENAI_API_KEY=sk-...
memvid put knowledge.mv2 --input docs/ --embedding -m openai-small
ask/find auto-detect the correct embedding runtime from the .mv2 when vectors are present. Use --query-embedding-model (or global -m) only when you need an explicit override.

Reranking (Hybrid Precision)

memvid ask may use a cross-encoder reranker (auto-downloaded on first use). Disable it in gated/offline environments:
memvid ask knowledge.mv2 --question "…" --no-rerank

Install a CLIP model:
memvid models install --clip mobileclip-s2
memvid models install --clip mobileclip-s2-fp16
memvid models install --clip siglip-base
Use it during ingestion and search:
memvid put photos.mv2 --input ./images --clip
memvid find photos.mv2 --query "sunset over ocean" --mode clip

NER Model (Logic‑Mesh)

Install NER:
memvid models install --ner distilbert-ner
Enable Logic‑Mesh during ingestion:
memvid put graph.mv2 --input docs/ --logic-mesh
memvid follow graph.mv2 traverse --start "Microsoft" --hops 2

Enrichment LLM Models

These are local GGUF models used by enrichment workflows (not by memvid ask):
memvid models install phi-3.5-mini
memvid models install phi-3.5-mini-q8
For memvid ask, choose a synthesis model with --use-model (e.g. --use-model openai, --use-model gemini-2.0-flash, or --use-model "ollama:qwen2.5:1.5b"). See Local Models with Ollama.

List / Verify / Remove

# Filter model list
memvid models list --model-type embedding
memvid models list --model-type clip --json

# Verify installed enrichment LLM models (phi-3.5-*)
memvid models verify
memvid models verify phi-3.5-mini

# Remove an enrichment LLM model
memvid models remove phi-3.5-mini --yes

Offline Mode

Set MEMVID_OFFLINE=1 to prevent downloads. In offline mode:
  • memvid models install … fails (it can’t download).
  • Embedding/reranker auto-download is blocked; run a semantic command once while online to populate caches.

Environment Variables

VariablePurpose
MEMVID_MODELS_DIRModel cache directory (default ~/.memvid/models)
MEMVID_OFFLINESkip downloads/network (1 to enable)
MEMVID_CLIP_MODELDefault local CLIP model (e.g. mobileclip-s2)
OPENAI_API_KEYOpenAI embeddings / CLIP / LLM providers
GEMINI_API_KEYGemini providers
ANTHROPIC_API_KEYClaude providers
COHERE_API_KEYCohere embeddings
VOYAGE_API_KEYVoyage embeddings